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Abstract—Context: With the increasing size of models with billions of parameters, a class of transformers has emerged to become
one of the hottest topics in machine learning: mixture of experts (MoEs). MoEs have been dominating the natural language processing
space with their ability to be trained with far less computation than their dense counterparts and have been revisited for computer
vision applications.

Aims: To investigate how best to apply MoE architecture, combining recent advances, for image classification. This investigation will
focus particularly on how the experts specialize and how the router performs task decomposition for said experts.

Method: This paper introduces a solution for overcoming the non-differentiability problem with sparse MoEs through the use of
transfer learning. First, a fully dense MoE is trained and then is switched to a sparse MoE whilst retaining the expert weights and only
re-training the new sparse gate. Furthermore, a unique approach for load balancing experts is introduced in a way that does not
hamper their ability to produce specializations by encouraging variance within the gate outputs for a given batch.

Results: The final model is able to beat all previously surveyed techniques and is able to converge on a very intuitive expert
specialization scheme that aligns with human perception.

Conclusion: The current approach to load balancing MoEs may be holding their performance back as they encourage poor expert
specialization. Rather than trying to balance for expert utilization, models should be aiming for maximum variation in expert selection
across a dataset to motivate highly semantic specializations.

Index Terms—Machine Learning, Deep Learning, Computer Vision, Mixture of Experts, Sparse Vision Transformers
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1 INTRODUCTION

IMAGE classification has always been a large application
of Machine Learning (ML), wherein some Deep Learning

model (classifier) is designed to correctly classify a set of
images to their respective classes. Traditionally, prior Deep
Learning (DL), this was done using hand-crafted algo-
rithms through various image processing techniques such
as autothresholding [1] to extract manually selected features
which could then be used with an ML classifier such as
Support Vector Machines (SVM) [2] or Random Forests [3].
With the introduction of DL, feature extraction could now
be done by the model in which the model is trained using
a large dataset of images to learn what features to extract.
EarlyDL models used for image classification were convo-
lutional neural networks (CNN) [4] which far outperformed
its competition at the time. This is because, unlike other
models, CNNs are able to leverage the spatial coherence
within images, exploiting the fact that neighboring pixels
/ regions of pixels are inherently related allowing them to
extract meaningful features much more easily.

Recently, transformer models [5], [6], first introduced
in natural language processing (NLP), have been steadily
gaining prominence over CNNs with their ability to capture
global relationships between far pixels / regions unlike
CNNs that only capture local features. Transformer models
come at the cost of being slightly more expensive to compute
as well as requiring far longer training times as they must
learn these relationships, in contrast to CNNs which are
locally biased by design through its use of convolutions

which can only act upon local pixels [6]. For this reason,
it is common to have transformers pretrained such that
they can learn relationships prior to being applied to down-
stream tasks such as classification. A common task used
for pretraining is image reconstruction through which the
transformer is used as the encoder for an auto-encoder
model to reconstruct parts of an image [7]. The encoder can
then be used as part of a different model to be trained for
a particular downstream task. This is referred to as fine-
tuning.

Recently, as these models have continued to grow in
scale, there has been a reemergence of a certain architec-
ture commonly known as mixture of experts (MoE), most
notably in NLP with the majority of their top performing
models such as Mistral 7B [8]. At a higher level, this refers
to combining multiple specialized models, or "experts", to
collectively solve complex tasks. This is often done with
the use of a gating model which aims to route a given
input through the best suited experts. This can involve
passing an input through all experts and performing some
weighted combination of the outputs based on the gate or
by only passing the input through a small subset of experts.
Currently, there are 2 main types of MoEs:

• Sparse MoE - Only some experts are utilized when
generating an output.

• Dense MoE - All experts are utilized when generat-
ing an output.



ORIGINAL RESEARCH WORK SUBMITTED FOR BACHELOR OF SCIENCE (COMPUTER SCIENCE) DEGREE 2

Although on the surface this may seem like a distinction
rather than a difference, this actually has large implications
for the model. In particular, sparse MoEs have the following
properties:

• Conditionally computed (Sparsity) [9] - As only a
subset of the model is required for a given output,
compute can be saved by not computing the output
of unused experts.

• Expert imbalance - Updating only the selected ex-
perts for each training sample results in undertrain-
ing of other experts and reinforces a fixed selection
by the router, hindering proper specialization.

On the other hand, dense MoEs are:

• Fully differentiable - As the output relates to all ex-
perts, the entire network is differentiable for a given
input. This allows back propagation throughout the
whole network for a given input circumventing the
issue of expert balance with sparse MoEs.

The aim of this paper is to investigate the use of MoE for
image classification in computer vision using the CIFAR100
dataset by combining some of the latest state of the art
(SOTA) MoE techniques. Accompanying this is a secondary
goal of trying to combine techniques between sparse and
dense models to overcome the weaknesses of both ap-
proaches. Primarily, this study will focus on the routing
strategies these models learn and how various techniques
affect how well the model is able to decompose the given
problem among its experts. Throughout this paper, this will
be referred to as task decomposition.

2 RELATED WORK

The idea of an MoE was first introduced by Geoffrey Hinton
[10] which proposed a supervised learning framework in-
volving an ensemble of several models. Each model would
be trained to process a subset of the training data, and
a single gating model would then be trained to select an
expert based on the input describing the first sparse MoE ar-
chitecture. Since this proposal, several works have explored
this idea of conditional computing but despite this, MoE still
remained a niche idea yet to be adopted for the following
reasons:

• GPU hardware - MoE models of this era were not
well suited for GPUs as they could not easily be
parallelized due to their sparse nature as GPUs prefer
to execute many identical operations concurrently as
opposed to being conditional.

• Dataset sizes - The benefits of MoE do not really
apply to the small datasets of the time as these could
be learned by smaller dense models much more
efficiently.

• Large batch sizes - Significantly larger batch sizes
are required to train MoE models as each expert is
only exposed to a subset of each batch.

• Task Decomposition - It was up to a human to de-
termine how a given task should be divided among
the experts. This meant knowledge of the dataset
and task was required making the mode unfit for

other tasks, especially ones with non-trivial decom-
positions.

Since then, the amount of available compute, size of
datasets and scale of models have dramatically increased,
facilitating the resurgence of MoEs. In particular, Noam
Shazeer et al. [11] introduced the idea of embedding MoE
within a model as a single MoE Layer which they applied
to a long short-term memory (LSTM) model for NLP. In
this architecture experts are no longer separate models that
would be trained separately but rather were single modules
within a given layer. Through this, all experts, including
the gate, could be trained end-to-end removing the need
for a manually designed task decomposition as the network
could learn one itself. Unfortunately, it was common for
the gating mechanism to converge to a state that always
selected the same experts for every input. This phenomenon
stemmed from the fact that selected experts were trained
more rapidly than others and thus the gate is incentivized to
continue selecting the same trained experts. To mitigate this,
an additional auxiliary loss term was added to act as a "soft"
constraint, enforcing that the gate selects experts equally
within a given batch. Additionally, it was hypothesized that
it was necessary to route the input through at least 2 experts.
The intuition behind this was that at least 2 experts were
needed with each forward pass to be able to effectively
learn which experts should be selected as the gate would
be provided with non-trivial gradients.

The work done by Fedus et al. [12] and Dmitry Lep-
ikhin et al. [13] extended this concept to the more recent
transformer architecture with the switch transformer and
GShard framework. This was done by replacing the multi-
layer perceptron (MLP) layer of the transformer [5] with
an MoE layer as described previously. Through this, each
token of the transformer is passed through the MoE layer
separately and thus tokens in the same sequence are not
always sent to the same experts. Additionally, they found
that it was actually not necessary to require at least 2
selected experts for effective training of the gate. As the
switch transformer was distributing each token for a given
input, it was important to also balance the distribution of
tokens among the experts. To this end, they added a term
to the auxiliary loss used previously to account for token
distribution as well as expert utilization. As well as this, they
also implemented a capacity factor which determines how
many tokens an expert is allowed to process per batch. If a
token is routed to an expert which has hit its max capacity,
the token is simply skipped and dropped. It should be noted
that this capacity factor must be carefully tuned to avoid
having too many dropped tokens.

Interestingly, the use of a capacity factor has the ad-
ditional benefit of being able to set the total capacity of
all experts below the total number of tokens which was
explored by Riquelme et al. [14] in which they used a low ca-
pacity factor to further reduce compute. To ensure that only
the most important tokens were processed with the limited
capacity, they utilized the gating weights to assign a priority
to each token such that tokens weighted more heavily for a
given expert have priority over those of lower weighting.
Through this they found that MoEs for image classification
are quite robust to low capacity factors and can perform
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on par with models without limiting capacity factors with
only 20-30% of tokens being processed. Furthermore, this
limitation can be applied after training making it incredibly
flexible as a model does not have to be pretrained with a
low capacity factor and thus can be applied to many models
out of the box.

So far, many of these works have addressed the problem
of balancing tokens across experts through the use of an
auxiliary loss function. This was because they relied on
tokens choosing top-k experts to be routed through. On the
other hand, the experts could instead choose top-k tokens
to process as proposed by Yanqi Zhou et al. [15]. This has
the benefit of guaranteeing a balanced distribution of tokens
among all experts as well as offering varied compute per
token as a token can be passed through multiple experts as
opposed to just 1. The distinction between tokens choosing
top-k vs experts choosing top-k is often referred to as token
choice vs expert choice, and it was observed by Tianlin
Liu et al. [16] that expert choice outperforms token choice
algorithms. It should be noted that expert choice utilizes
both future and past tokens unlike token choice algorithms
which is problematic for tasks such as autoregressive text
generation. Fortunately, for the task of image classification,
this does not pose as an issue.

Across the majority of the surveyed papers, a key aspect
has been the balanced distribution of tokens among experts.
It should be noted that this enforces a particular type of task
decomposition in which experts are heavily encouraged to
specialize in ways that can be distributed among the fixed
expert count. This may harm the overall performance of
the model depending on the task and expert count if there
does not exist an efficient task distribution that utilizes all
available experts equally. It is for this reason that routing
algorithms such as expert choice [15] are avoided as they
hard enforce equal token distribution by design. This paper
proposes a different soft constraint that does not enforce an
equal distribution of tokens but still enforces variation in the
selected experts.

Currently, many transformer models implement the
MoE layer as the MLP layer of the transfer that appears
after multi-headed attention [5]. Róbert Csordás et al. [17]
proposes a different approach in which the MoE layer
is applied to the attention mechanism in which experts
project query, key and value vectors in order to reduce the
number of attention heads. This is because the computation
of projections through experts scales linearly whereas the
computation of attention heads scales quadratically. Addi-
tionally, this can be combined with MoE in the MLP layers
to further decrease computation. Unfortunately, this paper
will only focus on MoE within the MLP layer due to the
lack of compute resources required for large MoE models
because, despite lowering compute, MoEs require all experts
to be reserved in memory. To add to this, architectures using
hierarchical MoEs [18], in which routers are stacked creating
a set of MoEs to choose from, are also avoided due to this
limitation.

In the majority of surveyed work, as stated by Joan
Puigcerver et al. [19] the issue of MoE models being non-
differentiable is rarely addressed. This is a problem as it
is because of this fact that sparse MoEs suffer from expert
imbalance, in particular the issue of under trained experts

as a result of them not being utilized in the forward pass
alongside gating networks not being able to relate to all
experts for a given input sample in training. Joan Puigcerver
et al. proposes a unique approach to MoE which foregoes
the benefits of conditional computation in favor of being
fully differentiable by remaining a fully connected model.
At a high level, this is achieved by having the experts use a
weighted sum of all tokens as opposed to only selecting the
top-k tokens. Despite being a fully connected model, they
argue that the model still follows MoE design philosophy
as each expert only views a subset of the tokens via the
weighted sum.

3 METHOD

3.1 Background Theory: MoE Transformer

Fig. 1. Standard transformer architecture (left), MoE transformer archi-
tecture (right).

The standard dense transformer consists of multi-
headed attention and a dense fully connected feed forward
layer, commonly referred to as the MLP layer, as shown in
the above Figure 1. The MoE layer replaces this MLP block
in the standard transformer to produce an MoE transformer.

This MoE layer consists of some gate (router in Figure
1), G, and some set of experts, E : {ei}, where i denotes the
ith expert. The output for a given MoE layer is then defined
as follows:

MoE(x) :=
|E|∑
i=1

G(x)i · ei(x)

Where G and ei are functions yet to be defined.

3.2 Architectural Overview and Design Choices
For pretraining, a standard masked auto encoder (MAE) [7]
setup will be used as it is the current SOTA method for
pretraining vision transformers. The input to the model will
consist of 36x36 images from the CIFAR-100 dataset. This
is done by slightly upscaling the images from 32x32 which
is done because Jen Hong Tan [20] showed that upscaling
the images to accommodate more tokens with the use of
3x3 patches improves performance greatly as there are 144
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TABLE 1
Parameters for pretraining

Parameter Value
Max epochs 3000
Patch size 3
Embed dim 192
Num experts 4
Depth 6
Num heads 12
Decoder dim 192
Decoder depth 4
Decoder heads 6
Mask ratio 0.75
Batch size 1048
Base lr 1.5e-4
Optimizer AdamW

TABLE 2
Parameters for finetuning

Parameter Value
Max epochs 200
Patch size 3
Embed dim 192
Num experts 4
Depth 6
Num heads 12
Batch size 768
Base lr 1e-3
Optimizer AdamW

total tokens as opposed to the traditional 64 from the use of
4x4 patches with 32x32 images. Additionally, the CIFAR-100
dataset would be auto augmented [21] following the CIFAR-
10 policy.

As for the MoE layers, they were applied to all trans-
former layers within the encoder of the model. This is
because this paper only focuses on the performance of MoE
for image classification in which the encoder is the only part
of the MAE used for the downstream task. The full recipe
for pretraining can be found in Table 1.

Within the MoE layer, the experts, ei, all consisted of a
single MLP layer. As for the gate, another single MLP layer
is used who’s outputs are passed through a softmax function
to provide weights describing how the experts should be
combined to generate the outputted tokens, x′:

x′ :=

|E|∑
i=1

G(x)i · ei(x) with G(x)i := softmax(Wx+ ϵ)[i]

For finetuning, the encoder of the MAE model is isolated,
and a classification head is appended to the CLS token
of the transformer [6] to perform the actual classifications.
The classification head simply consists of a single MLP
layer outputting classification probabilities for each class of
image. The full recipe for finetuning can be found in Table
2.

Currently, this setup is in the form of a dense MoE
such that during pretraining and finetuning the experts
are fully differentiable circumventing the shortcomings of
sparse MoEs in which there is imbalanced training of ex-
perts. However, in order to still reap the benefits of condi-
tional computation at inference time, the model is further
finetuned with its dense MoE layer replaced with a sparse
MoE layer in which only the top-k expert from a gate is
used:

G(x)i := topk(softmax(Wx+ ϵ)[i])

During this process, the entire model, except for the gates,
have their weights frozen such that only the new gates are
being trained to perform the same task decomposition and
routing as the previous gate. Through this, the knowledge of
the old dense gate is distilled into the sparse gate, maintain-
ing its learned task decomposition whilst now being able
to take advantage of conditional computation. Additionally,
to accommodate for the fact that the previous model has
additional signals through its utilization of all experts, after
distillation, the whole model is unfrozen and allowed to
finetune freely to make up those losses post training the
sparse gate.

To aid with this, some soft constraints need to be added
to the dense gate such that it generates a learnable output for
the sparse gate. Firstly, the output of the dense gate should
approach a one hot vector as the sparse gate acts affectively
as one thus making it difficult for the sparse network to
match performance if the dense gate heavily relies on more
than 1 expert for a given output. To enforce this, a soft
constraint describing that the inverse coefficient of variance,
CV ′(x), of the generated expert weights should be as small
as possible was added:

CV ′(x) :=
µ(G(x))

σ2(G(x)) + ϵ
, ϵ > 0

where µ and σ2 are the mean and variance of their respec-
tive inputs. The use of some positive non-zero ϵ is simply to
prevent divide by 0 issues.

Furthermore, an additional similar soft constraint is re-
quired to encourage the gate to select various experts across
an entire batch. This is done by ensuring that the inverse
coefficient of variance of each individual expert throughout
a batch is as small as possible:

CV ′
i (x) :=

µ(
∑

G(x)i)

σ2(
∑

G(x)i) + ϵ
, ϵ > 0

where
∑

G(x)i represents the sum of gate weights for
expert i across all input samples within a batch.

These auxiliary losses differ from those used in previous
works as they do not specifically encourage any form of
load balancing. As mentioned previously, this is beneficial
to give the gate access to more task decompositions that do
not require all tokens to be distributed equally that may be
better suited for the given task.

3.3 Testing, Verification and Validation

Visdom was used to collect and analyze all data from tests
and experiments in real time. The metrics used during
pretraining was the reconstruction loss from MAE and the
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average coefficient of variance, CV (x), of the experts across
a batch given by:

CVi(x) :=
σ2(

∑
G(x)i)

µ(
∑

G(x)i) + ϵ
, ϵ > 0

This metric was chosen as it describes the dispersion of
values from the mean which correlates with how well the
gate is routing tokens as a higher value suggests that it
is routing tokens to different experts frequently whereas
a lower value suggests that the gate has a bias towards
a particular expert. From this point, this metric will be
referred to as batch-wise variation.

3.4 Implementation
All implementation was performed on python 3.8.10 using
PyTorch 2.1.2 alongside NVIDIA’s CUDA 12.1.0. All training
was performed on a single 24GB NVIDIA 4090 GPU which
heavily limited the size of the models that could be tested.

4 RESULTS

The model was evaluated by pretraining and finetuning
on the CIFAR-100 dataset before testing its classification
score on its corresponding validation set. For the sake of
comparison, the same MoE model was trained utilizing
different gating strategies:

• Expert choice - Each expert chooses top-k tokens to
process [15].

• Token choice (Capacity factor) - Each token chooses
the top-k expert to route to. If the expert’s capacity is
full, then the token is dropped / skipped [12].

• Priority routing - Each token generates a set of
weights for which expert they should route to. Each
expert receives the top-k tokens based on the weight-
ings. If an expert’s capacity is full, the next highest
weighted expert is chosen.

Additionally, a base dense transformer model will also be
trained as a baseline. The dense transformer model will
have the same recipe as the MoE models except its embed
dimension is increased to match the parameter count of the
MoE models.

TABLE 3
Results of finetuned models on CIFAR-100

Model Accuracy Batch-wise variation
Dense transformer 72.4% -
MoE 75.1% 32.3
Expert choice 74.4% 9.9
Token choice 73.2% 10.3
Priority routing 72.8% 10.2

The above Table 3 shows the final accuracies of each
model on the validation set of CIFAR-100 after pretraining
and finetuning. Firstly, the proposed model far outperforms
its dense counterpart whilst also coming out on top com-
pared to other routing strategies. Not only this, but as
shown by Table 4, despite being trained as a dense MoE, by
distilling into a sparse MoE architecture it is able to reap the

TABLE 4
Table showing compute requirements of each model

Model Parameters GFLOPS per Image
Dense transformer 4.8M 614M
MoE 5.1M 272M
Expert choice 5.1M 272M
Token choice 5.1M 272M
Priority routing 5.1M 272M

Fig. 2. Graph showing the first 175 epoch of loss for each model during
pretraining.

Fig. 3. Graph showing the last 200 epoch of validation set accuracy for
each model during finetuning.

benefits of conditional computing whilst maintaining high
performance.

Furthermore, as shown by the above plots in Figures 2
and 3, our model is also able to train slightly faster than its
competition.

4.1 Investigating Expert Counts
As shown by the below Figure 4 increasing the number of
experts does yield some increase in performance, however
this begins to plateau at some point which matches with the
findings of other papers [14] [12]. It should be noted that
the point of plateau is dependent on your dataset size and
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Fig. 4. Graph showing how the number of experts impacted performance
of the model.

complexity of task and thus the number of experts typically
is a hyperparameter that must be tuned. For CIFAR-100, it
was found that this model performs best at around 4 experts
and there is not much point going beyond.

4.2 Investigating Task Decomposition

Our proposed model has a much higher batch-wise vari-
ation score than the other models which suggests that it
has a much more varied selection of experts across a batch
of samples. This can easily be visualized by mapping the
actual token distribution to each expert to see what sort of
specialization each model has learned.

4.2.1 Expert choice & Token choice & Priority routing

Fig. 5. Heatmap showing the average distribution of tokens across all 4
experts for each of the 6 layers for expert choice (left) and token choice
(right). Priority routing is not included as it guarantees equal distribution,
and so its heatmap would be uniform.

Expert choice, token choice and priority routing all ex-
hibited the same learned routing behavior. This involved
mostly unchanged token routing across all image samples
which is clearly shown in the Figure 11. From this it is clear
that the experts have specialized primarily in location with
each expert dedicating themselves to some well-defined
region.

Through the use of an esoteric image consisting of a
checkerboard of 2 colors, it is clear that the experts do have
some form of color bias as from Figure 12 it can be seen that
different colored tokens are routed differently, however this

seems to have little contribution to the overall distribution of
tokens across all images. This also explains the poor batch-
wise variation score from these methods as each expert
routes the same tokens as a result of following a positional
based task decomposition.

This further shows how routing is not as simple as trying
to equally distribute compute among the experts as this
inherently encourages poor task decomposition as shown
by all 3 equal distributing methods converging to the same
position-based expert specialization.

4.2.2 MoE

Fig. 6. Heatmap showing the average distribution of tokens across all 4
experts for each of the 6 layers.

Our proposed model, on the other hand, far outperforms
the others in terms of batch-wise variation and this shows
in the visualization of its token distribution in Figure 6.
Overall, all experts are seemingly used across all classes,
but since there is no enforcement of token balancing, there
is an imbalance seen in the routing of tokens for individual
groups of classes. This may seem bad, but it can actually
be beneficial if the reason for the imbalance is related to the
specific specialization that the model has learned.

This can be done quantitatively by inspecting the partic-
ular routes tokens take alongside their respective class. By
doing so it can be shown that the imbalance is indeed caused
by the specific task decomposition the gates have learned:

Fig. 7. Heatmap showing the key route taken by tokens for images under
the classes "boy", "man", "woman", "girl" and "chimpanzee".

For example the above Figure 7 represents the classes
"boy", "man", "woman", "girl" and "chimpanzee". This makes
intuitive sense as these classes have semantic relevancy to
each other. Another good example is the following patterns
for household items in which the route utilized by each
image very closely resembles each other further showing
semantic specialization.
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Fig. 8. Heatmap showing the key route taken by tokens for images under
the classes "clock" (left) and "plate" (right).

A more obscure example would be the following 2 routes
taken for the classes "clock" and "plate" as shown by Figure
8. The fact that these 2 also share similar routing shows how
the model aligns with human intuition as both the clock
and plate are semantically related through being large, flat
circular objects.

Fig. 9. Heatmap showing the key route taken by tokens for images
under the classes "lion", "wolf", "bear", "beaver", "fox", "cattle", "mouse",
"skunk", "otter", "leopard", "tiger", "squirrel", "camel", "kangaroo", "ele-
phant", "porcupine", "rabbit", "crocodile", "racoon", "possum", "shrew".

Finally, 21 of the 100 classes, all relating to 4 legged
animals are found using the route found in Figure 9. This
is most likely the reason for the imbalanced distribution
of experts across all classes as how each class semantically
relates to one another may not be balanced. To this end, as
this model is able to specialize on more semantic features,
its no surprise that inspecting the distribution of individual
tokens also shows semantic meaning. For example Figure
10 shows a clear specialization with in the final layer with
experts 1 and 3 handling the tree and ground respectively.

4.3 Additional Results

The novel technique of dropout [12] was investigated in
an attempt to manage poor expert utilization through a
model over utilizing a select few experts. However, using
dropout seemed to cause the majority of processing to move
from the experts into the attention mechanism. This was
evident by comparing the accuracy of the model with all
experts enabled vs with all experts dropped out. As shown
by Table 5, When a model was trained without dropout
its performance would plummet in response to losing its
experts, but if dropout was used, then the mode would only
lose a small fraction of its performance.

This is most likely because at the small scale of 4 experts,
dropping out a single expert is incredibly detrimental as
compared to dropping out 1 expert in a model consisting of
100+ which is how dropout was originally used in relation

TABLE 5
Table showing compute requirements of each model

Model Experts enabled Accuracy
MoE Yes 75.3%
MoE No 24.8%
MoE (10% dropout) Yes 74.7%
MoE (10% dropout) No 65.6%

to MoEs. For this reason I suspect that dropout is not a
feasible option for encouraging balanced expert utilization
at small expert counts.

4.4 Ablation Study
An ablation study was performed to determine if existing
MoE methods produce the optimal task decomposition for
a given task. This was done by training 2 models where
one used Token Choice and another used a predetermined
routing algorithm. Since it is not feasible for a manual
routing algorithm to be designed for a large dataset such
as CIFAR-100, a smaller dataset of MNIST [22] was used.

Both models consisted of a single transformer layer with
5 experts and the model which used manual routing had
the tokens routed based on similar looking classes such
that expert 1 handled the digits [1, 7], expert 2 [2, 5],
expert 3 [3, 4], expert 4 [6, 9] and finally expert 5 [8, 0].
The routing network was then trained after by freezing the
expert weights. The results can be seen in the table below:

TABLE 6
Results of manual vs learnt task decomposition

Task Decomposition Method Accuracy
Token Choice 88.7%
Manual 91.4%

The results above show that a manually designed task
decomposition can out perform a learnt one as specific
domain knowledge about the data can be used to enforce
a more optimal expert specialization. This can further be
shown in the visualisation of how tokens are distributed
among experts by image class. Figure 13 shows that no
clear intuitive expert specialization was learnt when Token
Choice was used, whereas the model with manual routing
has a clear expert specialization (Figure 14).

Fig. 13. Table showing the distribution of 1000 MNIST images among
experts for each class of MNIST with Token Choice. The expert for a
given image was determined by which expert was given the most tokens.

Fig. 14. Table showing the distribution of 1000 MNIST images among
experts for each class of MNIST with Manual Routing. The expert for a
given image was determined by which expert was given the most tokens.



ORIGINAL RESEARCH WORK SUBMITTED FOR BACHELOR OF SCIENCE (COMPUTER SCIENCE) DEGREE 8

Fig. 10. Distribution of tokens for our proposed method. Notice how experts are not specialized based on location, but have more semantic
specialization such as the separation of tree with the ground with experts 1 and 3 in the final layer.

Fig. 11. Distribution of tokens for expert choice. Notice how the regions each expert looks at remains the same in positional space across both
examples.

Fig. 12. Distribution of tokens for expert choice showing specialization in color. Notice how certain experts only receive tokens of a particular color.
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5 EVALUATION

This project will be evaluated using a list of deliverables of
increasing difficulty, primarily assessing various aspects of
the final model such as its ability to specialize, compute cost
and its ability to overcome the shortcomings of previous
models. The selected deliverables are as followed:

1) Implement a model which is able to overcome
the shortcomings of sparse MoEs being non-
differentiable to harness both conditional computa-
tion and fully differentiable training.

2) Implement a model which is able to decompose the
task of classification into well defined specializations
that ideally follow from semantics.

3) Develop a deep understanding of the model pro-
duced, and thereby the subset of MoEs surveyed,
and to show the evidence for or against the various
contributions made in the field.

Overall this project was extremely successful, with all
deliverables being fully delivered. The success of the first
deliverable is demonstrated in the core method of how
the model is trained while deliverable 2 and 3 are shown
extensively in Section 4.2.2.

The ablation studies and preliminary experiments con-
ducted provided sufficient data to gain significant insight
into the inner workings of the model providing evidence to-
wards its improved task decomposition and expert special-
ization. The most notable results came from comparing the
expert routes with the corresponding classification classes
as they demonstrate the models semantic understanding of
the images thoroughly.

The main limitations of this project were due to resource
constraints and time. MoEs perform the best with large
models and huge datasets, however with a single GPU setup
and minimal onboard memory, it was difficult to test the
ideas at a scale where they would be most applicable. The
most significant limitation was with batch size, as MoEs
often require large batch sizes to ensure that all experts are
able to train on a sufficient amount of inputs per batch. Due
to the memory limits enforced by the use of a single GPU,
the batch size used during training had to be small. It is for
this reason that the claims in this paper must be verified
at a larger scale as it may not be quite a fair comparison
as the use of a dense MoE during training circumvents this
issue for our proposed method, which may have made the
difference against the other sparse models which had to
handle a smaller batch size than they were perhaps designed
for.

6 CONCLUSION

This project successfully created a simple and novel ex-
pert routing algorithm which solves the issue of non-
differentiability. Transfer learning is used to distill knowl-
edge from a dense differentiable model to a sparse non-
differentiable model after training to regain the benefits of
conditional computing. Furthermore, a novel approach to
the concept of load balancing is investigated. Here, experts
are not be forced into equally distributing tokens; this
encourages poor task decomposition and should rather be

evaluated based on the variation in expert selection across a
batch of different inputs.

The main novel findings of this project are as follows, in
order of significance:

• Equally distributing tokens among experts is not the
most optimal way to train MoEs and encourage spe-
cialization. In fact, it can be detrimental to the model
as it enforces a poor set of task decompositions.

• Models trained with a softer requirement for equal
load balancing are able to create specializations that
align with human intuition between semantically
similar images.

• Dropping out experts at a small scale significantly
harms the performance of small scale MoE models
as each expert has a much larger contribution overall.
This often causes the model to make up for this by
becoming more robust through the attention mecha-
nism.

• Inspecting the route of tokens within a MoE model
and what outputs they relate to can help with under-
standing how the model works under the hood.

Future extensions to this project would involve tuning
the auxiliary loss terms to account for the distribution of
data in a dataset. This could aid in encouraging less obvious
specializations within already similar groups of inputs. For
example, Figure 9 shows how this single route handles
20% of the classes in CIFAR-100, and although they are
semantically related, it would be better if this individual
group was further divided to utilize more of the experts
overall.
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